Skip to main content
Log in

Skeletal muscle morphology in power-lifters with and without anabolic steroids

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The morphological appearance of the vastus lateralis (VL) muscle from high-level power-lifters on long-term anabolic steroid supplementation (PAS) and power-lifters never taking anabolic steroids (P) was compared. The effects of long- and short-term supplementation were compared. Enzyme-immunohistochemical investigations were performed to assess muscle fiber type composition, fiber area, number of myonuclei per fiber, internal myonuclei, myonuclear domains and proportion of satellite cells. The PAS group had larger type I, IIA, IIAB and IIC fiber areas (p<0.05). The number of myonuclei/fiber and the proportion of central nuclei were significantly higher in the PAS group (p<0.05). Similar results were seen in the trapezius muscle (T) but additionally, in T the proportion of fibers expressing developmental myosin isoforms was higher in the PAS group compared to the P group. Further, in VL, the PAS group had significantly larger nuclear domains in fibers containing ≥5 myonuclei. The results of AS on VL morphology in this study were similar to previously reported short-term effects of AS on VL. The initial effects from AS appear to be maintained for several years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen DL, Roy RR, Edgerton VR (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22:1350–1360

    Article  PubMed  CAS  Google Scholar 

  • Antonio J, Gonyea WJ (1993) Skeletal muscle fiber hyperplasia. Med Sci Sports Exerc 25:1333–1345

    PubMed  CAS  Google Scholar 

  • Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, Hunter GR (2000) Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335:1–7

    Article  PubMed  CAS  Google Scholar 

  • Bruce SA, Phillips SK, Woledge RC (1997) Interpreting the relation between force and cross-sectional area in human muscle. Med Sci Sports Exerc 29:677–683

    PubMed  CAS  Google Scholar 

  • Cheek DB (1985) The control of cell mass and replication. The DNA unit—a personal 20-year study. Early Hum Dev 12:211–239

    Article  PubMed  CAS  Google Scholar 

  • Ecob-Prince MS, Hill MA, Brown AE (1989) Localization of dystrophin in cultures of human muscle. Muscle Nerve 12:594–597

    Article  PubMed  CAS  Google Scholar 

  • Edgerton VR, Roy RR (1991) Regulation of skeletal muscle fiber size, shape and function. J Biomech 24(Suppl 1):123–133

    Article  PubMed  Google Scholar 

  • Ennion S, Sant’ana Pereira J, Sargeant AJ, Young A, Goldspink G (1995) Characterization of human skeletal muscle fibres according to the myosin heavy chains they express. J Muscle Res Cell Motil 16:35–43

    Article  PubMed  CAS  Google Scholar 

  • Greenfield I (1957) Lead poisoning. X. Effects of lead absorption on the products of conception. N Y State J Med 57:4032–4034

    PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Herbst KL, Bhasin S (2004) Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 7:271–277

    Article  PubMed  CAS  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FC, Walsh S, Kaiser E, Shell S, Hervey S (2000) Effects of high-intensity resistance Training on untrained older men. II. Muscle fiber characteristics and nucleo-cytoplasmic relationships. J Gerontol A Biol Sci Med Sci 55:B347–354

    PubMed  CAS  Google Scholar 

  • Hilber K, Galler S, Pette D (1997) Functional differences of myosin Heavy-chain isoforms in skeletal muscle. Naturwissenschaften 84:201–204

    Article  PubMed  CAS  Google Scholar 

  • Hughes SM, Cho M, Karsch-Mizrachi I, Travis M, Silberstein L, Leinwand LA, Blau HM (1993) Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol 158:183–199

    Article  PubMed  CAS  Google Scholar 

  • Kadi F (2000) Adaptation of human skeletal muscle to training and anabolic steroids. Acta Physiol Scand Suppl 646:1–52

    PubMed  CAS  Google Scholar 

  • Kadi F, Thornell LE (1999) Training Affects myosin heavy chain phenotype in the trapezius muscle of women. Histochem Cell Biol 112:73–78

    Article  PubMed  CAS  Google Scholar 

  • Kadi F, Eriksson A, Holmner S, Butler-Browne GS, Thornell LE (1999a) Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem Cell Biol 111:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kadi F, Eriksson A, Holmner S, Thornell LE (1999b) Effects of anabolic steroids on the muscle cells of strength-trained athletes. Med Sci Sports Exerc 31:1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL (2004) The Effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol 558:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Li X, Frontera WR (1997) Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272:C638–649

    PubMed  CAS  Google Scholar 

  • McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ (1996) Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol 81:2004–2012

    PubMed  CAS  Google Scholar 

  • McCormick KM, Schultz E (1992) Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy. Dev Biol 150:319–334

    Article  PubMed  CAS  Google Scholar 

  • McCormick KM, Thomas DP (1992) Exercise-induced satellite cell activation in senescent soleus muscle. J Appl Physiol 72:888–893

    Article  PubMed  CAS  Google Scholar 

  • Morgan JE, Partridge TA (2003) Muscle satellite cells. Int J Biochem Cell Biol 35:1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (1994) Myosin isoforms in mammalian skeletal muscle. J Appl Physiol 77:493–501

    PubMed  CAS  Google Scholar 

  • Sewry CA, Chevallay M, Tome FM (1995) Expression of laminin subunits in human fetal skeletal muscle. Histochem J 27:497–504

    Article  PubMed  CAS  Google Scholar 

  • Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S (2002) Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab 283:E154–E164

    PubMed  CAS  Google Scholar 

  • Sinha-Hikim I, Roth SM, Lee MI, Bhasin S (2003) Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab 285:E197–E205

    PubMed  CAS  Google Scholar 

  • Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S (1994) Type Iix myosin heavy chain transcripts are expressed in type Iib fibers of human skeletal muscle. Am J Physiol 267:C1723–C1728

    PubMed  CAS  Google Scholar 

  • Staron RS (1997) Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol 22:307–327

    PubMed  CAS  Google Scholar 

  • Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K (2000) Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 48:623–629

    PubMed  CAS  Google Scholar 

  • Sternberger LA (1979) The unlabeled antibody (Pap) method, introduction. J Histochem Cytochem 27:1657

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Margareta Enerstedt, Mona Lindström and Lena Carlsson for excellent technical assistance. This study was supported by grants from the Swedish National Centre for research in sports (90/98, 79/99), the Swedish Research Council (12X-03934) and the Medical faculty of Umeå University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Eric Thornell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, A., Kadi, F., Malm, C. et al. Skeletal muscle morphology in power-lifters with and without anabolic steroids. Histochem Cell Biol 124, 167–175 (2005). https://doi.org/10.1007/s00418-005-0029-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0029-5

Keywords

Navigation